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In this paper we study dynamic stall phenomenon of a pitching NACA0015 airfoil us-

ing feature based grid adaption technique. The fluid solver is based on FUN3D which

solves the three-dimensional, compressible, unsteady Reynolds-Averaged Naiver-Stokes

equations. The one equation Spalart-Allmaras is used a the turbulence closure. The

governing equations are discretized spatially using second-order finite volume methods and

temporally using an optimized second order backward difference scheme. The grid adap-

tion is based the anisotropic tetrahedral adaptation approach in which grid is adapted to

match a desired quality via an anisotropic metric calculated throughout the simulation.

Particularly we track vorticity throughout the pitching cycle and adapt the grid in areas

where vorticity is damped. Comparisons are also made with results using uniformly refined

grids. Results suggest feature-based adaptation has potential in refining the mesh in the

wake of the airfoil, allowing vorticity to be carried out several chords behind the airfoil

without excessive dissipation. Our study also shows that great care must be placed in

allowing the grid to be adapted in the vicinity of the airfoil as grid resolution can be lost.

I. Introduction

Research has shown that grid quality can dramatically affect simulation results. Kravchenko1 showed

that incorrect flow features were produced in the wake of a cylinder due to large grid spacing. As a result,

the separated flow region was shorter and the recirculation region immediately behind the cylinder became

smaller, resulting in incorrect flow features and poor force prediction. Similarly, in a review paper by

Komerath,2 it was noted that the wake grid resolution behind helicopter blades can impact the accuracy of

the flow simulation. In the study of dynamic stall, the grid quality also plays a critical role. Dynamic stall
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is a complex fluid mechanics problem plagued with vortex formation and shedding. To accurately predict

the force coefficients, it is critical to capture the vortex formation and its propagation in the flow. However,

without a priori knowledge of the vortex structures and their trajectories, creating a computationally efficient

grid to capture these features is challenging.

Feature-based grid adaption is a promising technique to automatically adapt grid at regions of interests.

It can reduce the manual interaction with the CFD tools and the required expertise of the user to obtain

accurate solutions.3 It can also significantly alleviate the need for spatial convergence verification of compu-

tational results by balancing the modeling accuracy and computational efficiency for engineering analysis.

Kang et al.4 and Park et al.5 have successively implemented feature-based grid adaptation schemes to resolve

vortex flow structures produced by a rotor-craft in hovering flight. Their studies showed that feature-based

adaptation methods are able to improve the prediction of lift and drag coefficients by refining grid where

vortices propagated through and interacted with vehicle structures. By improving spatial accuracy of the

vortex structures, they showed that feature-based grid adaption can better model vortex interactions which

are critical in hovering flight.

To fulfill the potential of feature-based grid adaption method, it is critical to calibrate the initial grid in

order to simulate flow features correctly.6,7 Without proper evaluation of the initial grid, the adapt mesh

can capture incorrect features far from their true locations. Further adaption can “force” features into a

refined area and hence steadily enhance an erroneous solution with each grid adaption. It was hypothesized

that this erroneous behavior was the result of an insufficient grid resolution of the initial uniform mesh on

which the feature-based grid adaption was based.3,6

If properly addressed, such issues should not inhibit the application of mesh adaptation to problems

in flow fields.8 In order to confirm the effectiveness and viability of feature-based adaptation for dynamic

stall flows, a study will be conducted on the flow over a 2D pitching NACA0015 airfoil. In particular, the

study will compare the results of an uniformly refined grid to that of a feature adapted grid. To learn

from previous studies, an initial spatial convergence study will be conducted to evaluate the effectiveness of

uniformly refining a grid. This will be determined by investigating the change in coefficients of lift and drag.

Next, one uniformly refined grid will be used as the initial grid for the adaptation study. We investigate if

the mesh can be improved to better capture the wake structure of the pitching airfoil.

II. Numerical Methods

FUN3Da is an unstructured finite-volume solver that has been developed and supported by the NASA

Langley Research Center.9,10 FUN3D solves the three-dimensional, unsteady, compressible Reynolds-Averaged

ahttp://fun3d.larc.nasa.gov/
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Naiver-Stokes (RANS) equations in integral form:

∂

∂t

∫
V

qdV +

∫
∂V

(F ∗ − FV ) · n̂dS = 0 (1)

where V is the control volume which is bounded by δV . F ∗ and Fv are the inviscid and viscous fluxes of

conservative variables. q represents the conserved variable vector

q =


ρ

ρu

ρv

ρw

E

 (2)

For the case of a moving control volume, the convective fluxes must take in account the relative velocity of

the control volume. The inviscid flux is adjusted for the control volume face speed |W | such that:

F ∗ = F − qW (3)

where F is a stationary control volume flex vector. The volume average (Q) of q must be also taken to

account for the moving volume:

Q =

∫
V
qdV

V
(4)

and the conservation equations become:

∂ (QV )

∂t
+

∮
∂V

(F ∗ − Fv) · n̂dS = 0 (5)

The convective inviscid and viscous fluxes are then defined as follows where F ∗ now accounts for the

relative motion of the control volume.

F ∗ =


ρ (u−Wx)

ρu (u−Wx) + p

ρv (u−Wx)

ρw (u−Wx)

(E + p) (u−Wx) +Wxp

 î+


ρ (v −Wy)

ρu (v −Wy) + p

ρv (v −Wy)

ρw (v −Wy)

(E + p) (v −Wy) +Wyp

 ĵ +


ρ (w −Wz)

ρu (w −Wz) + p

ρv (w −Wz)

ρw (w −Wz)

(E + p) (w −Wz) +Wyp

 k̂
(6)

Fv =


0

τxx

τyx

τzx

uτxx + vτxy + wτxz − qx

 î+


0

τxy

τyy)

τzy

uτyx + vτyy + wτyz − qy

 ĵ+


0

τxz

τyz

τzz

uτzx + vτzy + wτzz − qz

 k̂ (7)

Within FUN3D, the RANS equations are discretized using flux splitting scheme where the inviscid and vis-
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cous fluxes are handled separately. For second order accuracy, the values at the cell interfaces are calculated

using gradients at the mesh nodes and computed using a least-squares technique. Currently, feature-based

grid adaptation is only implemented on fully tetrahedral based computational domains. For tetrahedral

meshes, the full viscous fluxes are discretized using a finite-volume formulation in which the required ve-

locity gradients at the cell faces are computing using the Green-Guass theorem, which is equivalent to a

Galerkin approximation.

II.A. Temporal Discretization

Time-accuracy is achieved through an optimized second order backward difference scheme (BDF2OPT). It is

used to construct a higher order temporal scheme by extending the difference stencil in time.11 The details

of BDF2OPT and the temporal error control schemes are well documented by Biedron9 and will be briefly

discussed here. To begin the derivation of the equations used for time stepping, it is assumed that the control

volume is invariant in time (the grid is rigid) which is written as

V
∂Q

∂t
= R (8)

Expanding on Eq. (8) to evaluate the next time level of n+ 1, and writing the time derived as a series

of backward difference levels gives

V

∆t

(
φn+1Q

n+1 + φnQ
n + φn−1Q

n−1 + φn−2Q
n−2 + . . .

)
= Rn+1 (9)

The series of φn governs the accuracy of the backwards difference of the temporal discretization. The

respective values of φn varies depending the order of accuracy of the scheme, but must satisfy the requirement

of
∑
φn = 0. As stated before, FUN3D uses an optimized backwards difference scheme, which is a linear

combination of second and third order coefficients. With an order of accuracy that is in between second and

third order, the temporal equations are stable with any time-step. The coefficients for BDF2OPT are listed

in Table 1.

order φn+1 φn φn−1 φn−2

2nd 3/2 -2 1/2 0

3rd 11/16 -3 3/2 -1/3

BDF2opt 3/2− φn−2 −2 + 3φn−2 1/2− 3φn−2 -0.58/3

Table 1: Coefficients for backwards difference schemes9

A pseudo-time term (τ) is introduced into Eq. (9), as in Ref.,12 to minimize the error due to the lineariza-

tion about the time level of n+1. If δQ is linearized about τ and assumed to be equal to δQm = Qm+1−Qm,

where m is the current pseudo-time level, then the final form of the temporal equation can be written as
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[(
V

∆τ
+
V φn+1

∆t

)
I − ∂Rm

∂Q

]
∆Qm = Rm−

V

∆t

(
φn+1 (Qm −Qn) + φn−1

(
Qn−1 −Qn

)
+ φn−2

(
Qn−2 −Qn

)
+ . . .

)
(10)

At each sub-iteration of m, the linear system in Eq. (10)is iteratively solved using a user-specified

number of point Jacobi or Gauss-Seidel sweeps. When between time-steps, the equations are advanced in

pseudo time with local time stepping to accelerate the solution to a steady state pseudo time. In order to

accelerate convergence in pseudo time, the CFL number can be ramped during the sub-iterations.

A temporal error control method9 has been used to reduce the number of sub-iterative loops by exiting the

dual time stepping process when a specified criteria has been met. This helps address the issue of the choice

of the number of sub-iterations to use when solving the flow equations. The temporal error is calculated by

examining the difference in residual contribution of two different levels of time derivative approximations.

The sub-iteration loop will be terminated when the residuals drop below a specific fraction of the temporal

error norm.

II.B. Feature-Based Adaptation

FUN3D’s feature-based adaptation is a node based approach that uses anisotropic tetrahedral adaptation.

The mesh resolution is modified to match a desired quality via a anisotropic metric calculated throughout

the simulation.3,13,14 The approach in this paper focuses on using the vorticity magnitude at each node

to determine the local and global adaptation metric. First, the vorticity magnitude is used to form an

adaptation key, Kl,ω. This key is the vorticity magnitude delta across an edge connecting two adjacent

nodes n1 and n2, which is then scaled by the edge length, le. Scaling Kl,ω by the edge length acts as a filter,

emphasizing large changes in vorticity across long edges, while reducing the change across smaller edges.

This assists in the adaptation of large cells first.

Kl,ω = le
|ωn1| − |ωn2|

2
(11)

The local error adaptation intensity, Î, is then computed a for each node in the domain. This is done by

finding the maximum scaled key at each node where the adaptation key is normalized by a user specified

tolerance,Kt, thus:

Î = max

(
Kl,ω

Kt

)
edge

(12)

The selected Î is the edge with the greatest scaled vorticity delta connected to the node Next, the new
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isotropic mesh size, h1, is calculated using an estimate of the spacing from the original mesh, h0, and a

coarsening factor C. In this study C = 1.1.

h1 = h0 min

(
C,

(
1

Î

)0.2
)

(13)

Finally, the anisotropic adaptation metric is derived using the scalar isotropic mesh size (Eq. (13))

and a vorticity-magnitude Hessian not discussed here. The derivation of the anisotropic metric is detailed

thoroughly in references.15,16 During the computation of the pitching motion, the metric is intersected

in time to track the areas that require adaptation. This allows areas vorticity propagates through to be

marked for adaptation. The metric is then passed to adaptation modules currently implemented in FUN3D

to modify the mesh. The adaptation process provides node insertion and deletion, edge swapping, and node

movement to achieve the the desired mesh density and quality necessary to match the derived metrics. The

mesh adaptation process has been described in several papers.3,16,17

The adaptation modules implemented in FUN3D haven been shown to work well for both static inviscid3

and viscous flows;18 however, viscous adaptation lacks the capability to modify the the surface geometry. The

mesh can only be modified outside of the cells that define the boundary layer across the surface geometry.

Thus it is up to the user to ensure the surface geometry is adequately defined to capture the near wall

boundary layer of the geometry. The practitioner can control how much of the boundary layer mesh is

adapted by freezing the mesh a specified distance away from the surface. This capability has also been used

in Ref.,18 and will be used in this study.

III. Richardson Extrapolation

Preforming sensitivity studies on the spatial schemes of a numerical simulation can sometimes be pro-

hibitively computational expensive to conduct. Numerical data is normally compared to experimental data

to validate the computed solution. However, experimental data is not always available, thus alternate routes

must be pursed to ensure that the simulations are converging onto a single answer. One possible method is

to use Richardson Extrapolation19 to estimate the fully converged answer across two or three successively

refined grids by a constant factor. The extrapolation technique is used to estimate the order of the solution,

and project out a fully converged solution. This can help the practitioner estimate the error associated with

the simulation and determine whether further grid refinement is required.

The method to estimate the converge solution is straight forward and can be done two different ways.

The first, if the discretization order of solution is known, only two grids with some refinement ratio r (for

this study: 1.5) is required. The converged solution can be found with
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fh≈0 ∼= f1 +
(f1 − f2)

(rp − 1)
(14)

Where fh≈0 is the exact solution for an infinitely refined grid or time step, p is the formal order of accuracy

of the spatial discretization, and f1 and f2 are the flow variables of interest on the fine and coarse grid

respectively. In the event that p is not known, it can be estimated with a three refined grids that are refined

at a constant refinement ratio (r) value. To estimate p

p =
ln
(

f3−f2
f2−f1

)
ln(r)

(15)

where f1 to f3 are the flow variables of interest on the finest to coarsest grid. Once p is known, Eq. 14 can

be used. To estimate the error associated with the fine grid, Eq. 14 can be rewritten as

Efine =
(f1 − f2)

(rp − 1)
(16)

And the error for a coarse grid(s) can be found with:

Ecoarse =
rp(f1 − f2)

(rp − 1)
(17)

IV. Grid Generation

The NACA0015 geometry was selected for this study as it was used in the referenced experimental work.20

A family of grids were generated using AFLR321 for the spatial convergence study. AFLR3 (Advancing-

Front/Local-Reconnection) is a unstructured tetrahedral element grid generation code. An initial grid was

uniformly refined by a constant factor of 1.5. Thus each newly created grid had the number of nodes defining

the airfoil surface, and outer boundary spacing was increased by a r factor of 1.5: ie if the outer boundary

had 32 nodes, the new boundary would have 48. Each grid was generated only with tetrahedral elements due

to limitations in the feature-based adaptation in FUN3D. With these settings, the family of grids generated

are presented in Table 2.

Trailing Outer Initial Cell

h Airfoil Edge Boundary Height (10−5) gr Nodes

1 128 2 32 5.693 1.4000 5626

2 192 3 48 3.795 1.2515 16878

3 288 5 72 2.530 1.1613 36546

4 432 8 108 1.687 1.1048 82284

5 648 12 162 1.124 1.0687 185292

6 972 18 243 0.749 1.0453 419258

Table 2: Geometric settings for NACA0015 spatial study
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Where gr is the geometric ratio of the boundary layer, and h is the current grid number. An example of

the family of grids created is shown in Figure 1.

(a) Initial Grid (h1) (b) Initial Domain (h1)

(c) Refined Grid (h5) (d) Refined Domain (h5)

Figure 1: Uniform Grid Refinement Around Airfoil

IV.A. Flow Conditions and Kinematics

The flow conditions, as with the pitching kinematics are listed in Table 3 have been taken from Piziali.20

The airfoil is pitched about the quarter-chord location following a the sinusoidal kinematic described as

α = αm + α0sin

(
2πkM∞t

c

)
(18)

where α is the instantaneous angle of attack, αm is the mean angle of attack, α0 is the pitch amplitude, k is

the reduced pitching frequency, M∞ is the free stream Mach number, t is the simulation time, and c is the

airfoil chord length.

αm α0 k M∞ Re (106)

13.07 4.27 0.134 0.289 1.947

Table 3: Flow conditions and kinematics used for pitching airfoil

For the temporal sensitivity analysis, the time step was also varied. If the time step is too large flow
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features may be improperly resolved, if too small, then computational resources could be wasted. Like the

grid generation, the time step was consecutively refined, but by a factor of 2. Five levels of refinement were

chosen to test along side the spatial study, and are listed in Table 4. As i increases, so does the number

of steps taken per pitching cycle. The time step ∆t varied from 0.05 to 0.8, which corresponds to the flow

translating 1% to 23% of the airfoil’s chord (c).

i 1 2 3 4 5

steps 100 200 400 800 1600

∆t 0.8 0.4 0.2 0.1 0.05

∆x/c 0.23 0.12 0.06 0.03 0.01

Table 4: Tested time steps (∆t) used for temporal analysis, and the estimated flow convection distance per
time step (∆x/c).

V. Uniform Grid Refinement

Before beginning the study on the pitching motion, the solver was benchmarked to ensure spatial con-

vergence would be seen with a static airfoil. The flow conditions matched the conditions specified in Table 3

and the selected turbulence solver was the one equation Spalart Allmaras. Figure 2 reports the steady state

force coefficients at α = 13.04◦ against (N−1)
1
2 , where N is the number of nodes in the mesh, reported in

Table 2. This assumes the characteristic edge length of the mesh, h, varies with the inverse of the square

root, h ≈ N−1/2, for a 2D grid. The spatial discretization is also assumed to be second order, p = 2, thus

flow variables of interest should vary with h2.3

In Figure 2, the bottom axis can be read from left to right moving from the finest grid to the coarsest

(h6 ← h1). The two plots show as the grid is refined, lift and drag coefficients begin to converge. For

comparison, the Richardson Extrapolation is shown for a h = 0 grid. This simply verifies that as the grid is

refined, the flow solution begins to converge onto a single answer.

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 1 2 3 4 5 6 7 8

C
L

h x10
-3
 = (1/N)

1/2

Richardson

Numerical

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0 1 2 3 4 5 6 7 8

C
D

h x10
-3
 = (1/N)

1/2

Figure 2: Static lift, drag, and moment coefficients at an angle of 13.04◦.
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Figure 3 illustrates how the flow changes with uniform refinement. It can be seen that a large separation

region is prevalent about the airfoil in Figure 3a and is greatly reduced in Figure 3d. This helps illustrate

the importance of grid resolution. The flow features can dramatic change with the grid used.

(a) h1 (b) h3

(c) h5 (d) h6

Figure 3: Changes in vorticity with grid resolution of a steady state angle of attack at 13.04◦

V.A. 13 ± 4◦ Pitching Convergence

In this section, we will begin to focus on the spatial and temporal convergence of a pitching airfoil. Each grid

specified in Table 2 was tested at each time-step listed in Table 4, resulting in 36 unique combinations of grid

density and time step sizing. It is important to note: results from grid combinations h1, h2, 4t = 0.4, 0.8

will not be discussed in the future sections.

Figures 4 and 5 show the averaged coefficient of lift and drag when the spatial and temporal resolutions

are varied respectively. Figure 4 plots the effects of grid density on the averaged lift and drag coefficients.

Lift, and drag show a strong dependence on the number of nodes used. As the spatial resolution of the grid

is increased, the magnitude of the averaged forces begins to converge onto the extrapolated value.

Temporal resolution, figure 5, has little effect on the averaged force coefficients. At each grid resolution,

reducing the time step modifies the averaged force coefficients little. Examining the instantaneous force

coefficients, Figure 6, throughout the pitching cycle reveals a very different story. It can be seen that as the

spatial resolution is increased, the magnitude of the forces is modified but the temporal resolution has control
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over the shape of the force profile through the cycle. As the spatial resolution is increased, the flow features

are better resolved due to increased grid density, but can be damped due to a coarse temporal resolution .

Thus the flow field can be adequately resolved spatially, but not properly tracked through time. As time is

refined, the flow feature is better projected altering the shape of the force profile through time.
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Figure 4: Lift, and drag coefficient variation due to selected spatial resolution of a pitching airfoil between
13± 4◦.
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Figure 5: Lift, and drag coefficient variation due to selected temporal resolution of a pitching airfoil between
13± 4◦.

V.B. Convergence Error

In order to conclude which grid and time step combination would give a satisfactory result, the error as-

sociated with each spatial and temporal combination must be compared. The error for averaged lift and

drag coefficients were calculated using Eq. 16 and 17 are reported in Figure 7. The spatial error of the lift

and drag coefficients (figure 7a) is seen to plateau as the grid density approaches h6. As discussed in the

last section, the temporal resolution has a greater impact on the instantaneous force coefficients rather than
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Figure 6: Lift, and drag coefficient of a pitching airfoil between 13± 4◦ at ∆t = 0.05, 0.1, and 0.2.
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the averaged. Examining the temporal error (figure 7b), the decrease in error becomes linear as the grid is

refined and the time step is reduced. However, the magnitude of error associated the averaged coefficients

due to the temporal resolution is nearly two magnitudes lower than the spatial related error. Thus the time

step should be chosen from examining the instantaneous force history and not the averaged error.
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(a) Lift and drag coefficient error due to grid density.
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(b) Lift and drag coefficient error due to time step.

Figure 7: Computed lift and drag coefficient errors due to selected spatial and temporal resolutions.

VI. Feature-Based Adaptation

In order to investigate whether feature adaption can feature-based adaptation can accelerate the reduction

of spatial error using less nodes, a grid outside of the asymptotic convergence of lift and drag was selected.

To prevent erroneous solutions from being developed from an under-refined grid, h4 was selected due to being

outside of the lift and drag convergence seen in figure 6 and 7a. Selecting h4 for refinement will demonstrate

whether feature-based adaptation is able to bring a grid (h4) to a similar solution predicted by (h6) without

input by the user. A time step of ∆t = 0.1 was used, and all flow conditions remained equal to those specified
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in Table 3.

Before discussing the settings used, the process used to determine the adaptation metric must be intro-

duced. Figure 8 illustrates the iterative process used. An initial grid, h4, is supplied to the flow solver. After

each time step, the adaptation metric is computed with the current flow solution, and then intersected with

the previous calculated metric. The flow solution is advanced in time, and the grid moved. This process

repeats until four pitching cycles were completed. The adaptation metric is then passed to the grid adapta-

tion modules implemented in FUN3D. The grid is then iterated until the adaptation metric is satisfied. The

grid is then saved, and passed back to the flow solver and the flow entire process repeats.

Flow Solver Grid Adaptation

Metric
Satisfied?

Iterate
Adaptation

Initial Grid

Save
Adapted Grid

Compute 
Adaptation Metric

Four pitching 
cycles

complete?

Advance Time, 
and Move Grid No

Yes

Yes

No

Figure 8: Feature-based adaptation process

Each flow solver and adaptation iteration possessed the same flow settings as previously stated, and was

allowed to iterate 6 times. During each iteration, the adaptation was allowed to increase, or decrease cell

volume by moving, adding and/or removing nodes, or swapping edges. The maximum desired node count

was set to an equivalent node count of h6 (≈ 400, 000 nodes) after 6 iterations. Each iteration allowed the

grid to increase the global node count in increments of 18%. This did not mean the adapted grid reached

this maximum node count. At each adaptation iteration, the grid was only allowed to grow at a specified

rate to ensure needless grid growth was avoided. The boundary layer was frozen at a y+ distance of 100 to

keep the boundary layer from being modified.

VI.A. Adapted Mesh

Before discussing the results, the adapted mesh produced by the feature adaptation will be examined. Not all

meshes will be shown, as it would be superfluous. Figure 9 shows three meshes from a selection of iteration

steps 0 (initial),4, and 6. Comparing the initial and the 4th iteration of the mesh, it is easily seen there has

been significantly modification. Adaptation has mainly occurred in the wake and around the airfoil, with

little adaptation occurring elsewhere. Comparing steps 4, and 6, it is difficult to distinguish any change in
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the mesh. It was confirmed through the examination of the global node count that the node density was

increased, and can be seen in figure 10. To better observe how the grid was adapted, the change in cell

volume was examined.

(a) Initial Grid (b) 4th Adaptation (c) 6th Adaptation

Figure 9: The initial, 4th, and 6th mesh adaptation of the selected h4 grid.

0
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0 1 2 3 4 5 6

N
o
d
e
s
 
x
 
1
0
5

Adaptation Iteration

Figure 10: Node increase with adaptation at each iteration

By observing the change in cell volume from each iteration step, how and where the mesh was adapted is

easily distinguished. By calculating the cell volume in each mesh, and dividing them, a ratio of the change

in cell volume could be observed such that:
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Rcv =
Vn−1
Vn

(19)

Where Rcv is the ratio of change in cell volume, V is the cell volume, and n is the iteration number. If

Rcv > 1 the cell volume between the two iterations was reduced (refinement), if Rcv < 1 cell volume was

decreased (coarsening), finally if Rcv ≈ 1 there was little to no change in the cell. This gives a straight

forward visualization of where and how the mesh was adapted. Results of the change in cell volume are

shown in Figure 11 for iterations 0 through 6, and the cumulative change.

Looking at the overall change in Rcv in Figure 11 the largest change in cell volume occur in the first 4

iterations in the wake of the airfoil, similar to Ref.3 for a hypersonic case. As the iteration count increases

towards 6, there is less change observed in the domain. Figure 11f illustrates the overall change in cell

volume between iterations 0 and 6 which shows some changes that were not previously observed. Coarsening

has appeared around the airfoil itself which did not show in the single consecutive cell ratio plots. This

coarsening did however have an affect on the resulting flow field, and will be discussed in the next section.

VI.B. Adapted Flow Field

Immediate improvements to the airfoil wake can be seen from the grid adaptation. Figure 12 plots the cycle

averaged vorticity magnitude produced by the pitching airfoil using the initial, 2nd, 4th, and 6th adapted

meshes. The cycle average was calculated by averaging the vorticity magnitude at each node during two

pitching cycles. Unlike the change in cell volume, where the greatest change was observed in the first few

iteration, the vorticity continues to become better resolved as the adaptation continues. After the second

adaptation, the wake of the airfoil is carried out twice the distance compared to the initial grid. As the

adaptation continues, the average vorticity magnitude increases further downstream, and the wake becomes

less diffuse.
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(a) Iteration 0 to 1 (b) Iteration 1 to 2

(c) Iteration 2 to 3 (d) Iteration 3 to 4

(e) Iteration 4 to 5 (f) Overall Change (0 to 6)

Figure 11: Change in cell volume ratio (Rcv) between consecutive adaptation iteration steps. (Red) Rcv > 1,
(Green) Rcv ≈ 1, (Blue) Rcv < 1
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(a) Initial Grid

(b) 2th Adaptation

(c) 4th Adaptation

(d) 6th Adaptation

Figure 12: Cycle averaged vorticity magnitude of the initial, 2nd, 4th, and 6th adapted meshes.

As discussed previously, figure 11f revealed coarsening occurring around the airfoil during consecutive

adaptation. Snapshots were taken at the mean angle of attack to illustrate the effects of adapted coarsening

had on the flow field. The initial mesh (figure 13a) shows vorticity along the upper surface of the airfoil

detaching at approximately at x/c = 0.75. At the second iteration (figure 13b), coarsening of the mesh can

be seen near the surface of the airfoil and vorticity detaches sooner (approximately x/c = 0.25). Vorticity
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begins to be reattached as the adaptation and coarsening continues (figure 13c) but the vorticity magnitude

is weaker compared to the initial grid. This is the result of inadequate grid resolution near the surface of

the airfoil, which results in the reduction of force coefficients (shown in figure 14).

(a) Initial Mesh (b) Iteration 2 (c) Iteration 6

Figure 13: Coarsening of mesh and changes in vorticity close to the airfoil surface due to mesh adaptation.

VI.C. Adapted Forces and Error

Figures 14 plots the instantaneous lift and drag coefficients for four selected adaptation iterations: the initial,

2nd, 4th, and 6th adapted meshes listed as I0, I2, I4, and I6 respectively. Like the grid adaptation, the force

coefficients show their largest change in the first few adaptations. This change is due to the effect of slow

coarsening around the airfoil that occurs throughout the adaptation history observed in figure 11. However,

as the grid continues to adapt, the instantaneous forces first diverge away from I0 and then begin to converge

back towards I0.
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Figure 14: Instantaneous lift, drag, and moment coefficients of the initial, 2nd, 4th, and 6th adapted meshes.

Examining the force averages, and errors (figure 15) show similar results. The two force coefficients were

seen to diverge quickly away from the expected trend of approaching the uniform refinement values. The first

adaptation results in an approximate 50% reduction in the lift coefficient, with tripling of the average drag.

Due forces changing quickest in the first set of adaptations, the spatial error associated with the adapted

grids resulted in a “noisy” error plot. However, adaptations 3 through 6 show a rate of error reduction

greater than the uniform refinement. While coarsening affected the flow field, the adaptation did continue

to reduce the spatial error from the grid.

In summary, the grid adaptation was seen to have it’s largest effects in the first few iterations. Slow

coarsening of the mesh around the airfoil resulted in altered lift and drag coefficients. However, refinement

of the wake of the airfoil allowed vorticity to be carried out significantly further than the initial mesh.

Thus feature-based adaptation can be an effective means of wake refinement for dynamic stall when the

practitioner has no prior knowledge of the wake characteristics.
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Figure 15: Average and error of lift, drag, and moment coefficients of adapted grids

VII. Conclusion

A dynamic stall motion was selected from a previous experimental study that replicates sinusoidal pitching

motion. A family of uniformly refined grids was generated and evaluated to find the reduction in spatial

and temporal error associated with each grid. It was found as the grids were uniformly refined, the average

spatial error for each grid was reduced. The selected time step was found to impact the average forces little,

but had a large effect on the instantaneous force profile; primarily the down-stroke of the motion.

For the feature-based adaptation, a single grid and time stepping combination was selected from the

uniformly refined grid family, and tested as to whether feature adaption would improve the rate of convergence

as the grid resolution was increased. Coarsening occurred around the airfoil altering the vorticity being

generated by the wing. This reduced the strength of vorticity on the surface of the airfoil, and initially

reduced the instantaneous force coefficients. However, as the adaptation continues, instantaneous forces

were seen to converge near their original values. In the examination of the spatial errors, the rate of error
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reduction was seen to be greater than that of the uniform refinement after the second adaptation. Significant

wake refine was also observed allowing vorticity to be carried well behind the airfoil.
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